Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts

Author:

Hamann Fred12,Ferland Gary34

Affiliation:

1. Department of Astronomy, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611-2055;

2. Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, California 92093-0424

3. Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055;

4. Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 Canada,

Abstract

▪ Abstract  Quasar (QSO) elemental abundances provide unique probes of high-redshift star formation and galaxy evolution. There is growing evidence from both the emission and intrinsic absorption lines that QSO environments have roughly solar or higher metallicities out to redshifts >4. The range is not well known, but solar to a few times solar metallicity appears to be typical. There is also evidence for higher metallicities in more luminous objects and for generally enhanced N/C and Fe/α abundances compared with solar ratios. These results identify QSOs with vigorous, high-redshift star formation—consistent with the early evolution of massive galactic nuclei or dense protogalactic clumps. However, the QSOs offer new constraints. For example, (a) most of the enrichment and star formation must occur before the QSOs “turn on” or become observable, on time scales of [Formula: see text] 1 Gyr at least at the highest redshifts. (b) The tentative result for enhanced Fe/α suggests that the first local star formation began at least ∼1 Gyr before the QSO epoch. (c) The star formation must ultimately be extensive to reach high metallicities; that is, a substantial fraction of the local gas must be converted into stars and stellar remnants. The exact fraction depends on the shape of the initial mass function (IMF). (d) The highest derived metallicities require IMFs that are weighted slightly more toward massive stars than in the solar neighborhood. (e) High metallicities also require deep gravitational potentials. By analogy with the well-known mass–metallicity relation among low-redshift galaxies, metal-rich QSOs should reside in galaxies (or protogalaxies) that are minimally as massive (or as tightly bound) as our own Milky Way.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3