Anhydrous Proton-Conducting Polymers

Author:

Schuster Martin F.H.1,Meyer Wolfgang H.1

Affiliation:

1. Max-Planck-Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany;

Abstract

▪ Abstract  Anhydrous proton-conducting polymers usually consist of a more or less inert polymer matrix that is swollen with an appropriate proton solvent (in most cases, phosphoric acid). An outline of the different materials is provided, with a focus on PBI/H3PO4 blends that are currently most suitable for fuel cell applications. Also discussed are alternative concepts for fully polymeric materials, which establish proton conductivity as an intrinsic property using amphoteric heterocycles such as imidazole as a proton solvent. The development of some of the first polymers is described, and the fundamental relations between their material properties and conductivity are discussed. Closely related to this relatively new concept are mechanistic investigations focusing on intermolecular proton transfer and diffusion of (protonated) solvent molecules, the contributions of both transport processes to conductivity, and the dependence of these ratios on composition, charge carrier density, etc. Although the development of fully polymeric proton conductors is inseparably related to mechanistic considerations, relatively little attention has been paid to these concepts in the field of conventional membranes (hydrated ionomers, H3PO4-based materials). Consequently, their general relevance is emphasized, and according investigations are summarized to provide a more comprehensive picture of proton transport processes within proton exchange membranes.

Publisher

Annual Reviews

Subject

General Materials Science

Cited by 301 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3