STRUCTURE, FUNCTION, AND DIETARY REGULATION OF Δ6, Δ5, AND Δ9 DESATURASES

Author:

Nakamura Manabu T.1,Nara Takayuki Y.1

Affiliation:

1. Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;,

Abstract

▪ Abstract  Fatty acid desaturases introduce a double bond in a specific position of long-chain fatty acids, and are conserved across kingdoms. Degree of unsaturation of fatty acids affects physical properties of membrane phospholipids and stored triglycerides. In addition, metabolites of polyunsaturated fatty acids are used as signaling molecules in many organisms. Three desaturases, Δ9, Δ6, and Δ5, are present in humans. Delta-9 catalyzes synthesis of monounsaturated fatty acids. Oleic acid, a main product of Δ9 desaturase, is the major fatty acid in mammalian adipose triglycerides, and is also used for phospholipid and cholesteryl ester synthesis. Delta-6 and Δ5 desaturases are required for the synthesis of highly unsaturated fatty acids (HUFAs), which are mainly esterified into phospholipids and contribute to maintaining membrane fluidity. While HUFAs may be required for cold tolerance in plants and fish, the primary role of HUFAs in mammals is cell signaling. Arachidonic acid is required as substrates for eicosanoid synthesis, while docosahexaenoic acid is required in visual and neuronal functions. Desaturases in mammals are regulated at the transcriptional level. Reflecting overlapping functions, three desaturases share a common mechanism of a feedback regulation to maintain products in membrane phospholipids. At the same time, regulation of Δ9 desaturase differs from Δ6 and Δ5 desaturases because its products are incorporated into more diverse lipid groups. Combinations of multiple transcription factors achieve this sophisticated differential regulation.

Publisher

Annual Reviews

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3