Affiliation:
1. Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202;
2. Howard Hughes Medical Institute, University of Alabama, Birmingham, Alabama 35294;
Abstract
Approximately 500 mya two types of recombinatorial adaptive immune systems appeared in vertebrates. Jawed vertebrates generate a diverse repertoire of B and T cell antigen receptors through the rearrangement of immunoglobulin V, D, and J gene fragments, whereas jawless fish assemble their variable lymphocyte receptors through recombinatorial usage of leucine-rich repeat (LRR) modular units. Invariant germ line–encoded, LRR-containing proteins are pivotal mediators of microbial recognition throughout the plant and animal kingdoms. Whereas the genomes of plants and deuterostome and chordate invertebrates harbor large arsenals of recognition receptors primarily encoding LRR-containing proteins, relatively few innate pattern recognition receptors suffice for survival of pathogen-infected nematodes, insects, and vertebrates. The appearance of a lymphocyte-based recombinatorial system of anticipatory immunity in the vertebrates may have been driven by a need to facilitate developmental and morphological plasticity in addition to the advantage conferred by the ability to recognize a larger portion of the antigenic world.
Subject
Immunology,Immunology and Allergy
Cited by
409 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献