Turbulence, Magnetism, and Shear in Stellar Interiors

Author:

Miesch Mark S.1,Toomre Juri2

Affiliation:

1. High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307-3000;

2. JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309-0440;

Abstract

Stars can be fascinating settings in which to study intricate couplings among convection, rotation, magnetism, and shear, usually under distinctly nonlinear conditions that yield vigorous turbulence. The emerging flux and the rotation rates of stars can vary widely, yet there are common elements that must contribute to building and maintaining the vibrantly evolving magnetic activity they exhibit. Some of these elements, such as the rotational shear and meridional flows established by the coupling of convection with rotation, can now be studied in detail within our nearest star using helioseismology. Major three-dimensional numerical simulations help refine our intuitions about such interior dynamics, aided by rapid advances in supercomputing that are improving the fidelity of the modeling. These developments, combined with intense thrusts at new high resolution and continuous observations of solar magnetism and solar oscillations, herald a promising era for exploring such astrophysical fluid dynamics.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3