Affiliation:
1. Department of Biochemistry and Biophysics and the Faculty of Nutrition, Texas A&M University, College Station, Texas 77843-2128;
Abstract
The transport and cellular metabolism of Cu depends on a series of membrane proteins and smaller soluble peptides that comprise a functionally integrated system for maintaining cellular Cu homeostasis. Inward transport across the plasma membrane appears to be a function of integral membrane proteins that form the channels that select Cu ions for passage. Two membrane-bound Cu-transporting ATPase enzymes, ATP7A and ATP7B, the products of the Menkes and Wilson disease genes, respectively, catalyze an ATP-dependent transfer of Cu to intracellular compartments or expel Cu from the cell. ATP7A and ATP7B work in concert with a series of smaller peptides, the copper chaperones, that exchange Cu at the ATPase sites or incorporate the Cu directly into the structure of Cu-dependent enzymes such as cytochrome c oxidase and Cu, Zn superoxide dismutase. These mechanisms come into play in response to a high influx of Cu or during the course of normal Cu metabolism.
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
246 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献