FILAMENT-STRETCHING RHEOMETRY OF COMPLEX FLUIDS

Author:

McKinley Gareth H.12,Sridhar Tamarapu12

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

2. Department of Chemical Engineering, Monash University, Melbourne, Victoria, Australia;

Abstract

▪ Abstract  Filament-stretching rheometers are devices for measuring the extensional viscosity of moderately viscous non-Newtonian fluids such as polymer solutions. In these devices, a cylindrical liquid bridge is initially formed between two circular end-plates. The plates are then moved apart in a prescribed manner such that the fluid sample is subjected to a strong extensional deformation. Asymptotic analysis and numerical computation show that the resulting kinematics closely approximate those of an ideal homogeneous uniaxial elongation. The evolution in the tensile stress (measured mechanically) and the molecular conformation (measured optically) can be followed as functions of the rate of stretching and the total strain imposed. The resulting rheological measurements are a sensitive discriminant of molecularly based constitutive equations proposed for complex fluids. The dynamical response of the elongating filament is also coupled to the extensional rheology of the polymeric test fluid, and this can lead to complex viscoelastic-flow instabilities such as filament necking and rupture or elastic peeling from the rigid end-plates.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 423 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3