Genomic Insights into Marine Microalgae

Author:

Parker Micaela S.1,Mock Thomas2,Armbrust E. Virginia1

Affiliation:

1. School of Oceanography, University of Washington, Seattle, Washington 98195;,

2. School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom;

Abstract

Marine eukaryotic photosynthesis is dominated by a diverse group of unicellular organisms collectively called microalgae. Microalgae include cells derived from a primary endosymbiotic event (similar to land plants) and cells derived from subsequent secondary and/or tertiary endosymbiotic events. These latter cells are chimeras of several genomes and dominate primary production in the marine environment. Two consequences of multiple endosymbiotic events include complex targeting mechanisms to allow nuclear-encoded proteins to be imported into the plastid and coordination of enzymes, potentially from disparate originator cells, to form complete metabolic pathways. In this review, we discuss the forces that shaped the genomes of marine microalgae and then discuss some of the metabolic consequences of such a complex evolutionary history. We focus our metabolic discussion on carbon, nitrogen, and iron. We then discuss biomineralization and new evidence for programmed cell death in microalgae. We conclude with a short summary on advances in genetic manipulation of microalgae and thoughts on the future directions of marine algal genomics.

Publisher

Annual Reviews

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3