ANNUAL LIPID CYCLES IN HIBERNATORS: Integration of Physiology and Behavior

Author:

John Dark1

Affiliation:

1. Department of Psychology, University of California, Berkeley, California 94720-1650;

Abstract

▪ Abstract  Mammalian hibernation is a temporary suspension of euthermia allowing endotherms to undergo reversible hypothermia and generate a marked savings in energy expenditure. In most fat-storing hibernator species, seasonal changes in food intake, triacylglycerol deposition, metabolism, and reproductive development are controlled by a circannual clock. In ground-dwelling sciurid rodents (ground squirrels and marmots), for example, energy intake increases during a summer body mass gain phase, and toward the end of this phase metabolic rate also begins to decrease, resulting in a profound increase in lipid deposition as fat. Increased activity of lipogenic hormones and enzymes correspond with this increase. The hibernation mass loss phase begins after the body mass peak in the fall and ends in spring. During this phase, stored lipids are slowly utilized in a programmed manner by undergoing deep torpor or hibernation during which the hypothalamic setpoint for body temperature is typically reduced to just above 0°C. Throughout the hibernation season, bouts of deep torpor are punctuated by periodic arousals in which brown adipose tissue thermogenesis plays a critical role. Lipid oxidation nearly exclusively fuels deep torpor and most of the rewarming process. The fatty acid composition of stored lipids can affect the depth and duration of deep torpor, and saturated fatty acids may be preferentially used during hibernation, whereas polyunsaturated fatty acids may be preferentially retained. Female and underweight male hibernators terminate hibernation in spring when aboveground food becomes available; in contrast, heavier males with sufficient lipid reserves spontaneously terminate hibernation several weeks before females and independent of food availability. Mating occurs shortly after emergence from hibernation, and the lipid cycle begins again with the completion of reproduction. Lipid deposition and mobilization, temperature regulation, reproduction, and circannual timing are intimately interdependent. The unique manner in which they are controlled during the annual cycle, especially lipid reserves, makes hibernators valuable and promising models for research into the mechanisms underlying these processes in all mammals.

Publisher

Annual Reviews

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3