Regulation of Leukotrienes in the Management of Asthma: Biology and Clinical Therapy

Author:

R. Leff Alan1

Affiliation:

1. Department of Medicine MC6076, Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637;

Abstract

▪ Abstract  Leukotrienes (LTs) are the ultimate synthetic product resulting from the intracellular hydrolysis of membrane phospholipid at the nuclear envelope in inflammatory cells. Activated cytosolic phospholipase (cPLA2) catalyzes the production of arachidonic acid, which is converted by cyclooxygenases into leukotriene A4 (LTA4) and subsequently into the chemotaxin LTB4, which has no direct bronchoconstrictor activity. In certain inflammatory cells, LTA4 is converted into the cysteinyl leukotriene (cysLT) LTC4, which is converted into LTD4 and finally to LTE4 after extracellular transport. All cysLTs occupy the same receptors and are extremely potent bronchoconstricting agents that are pathogenetic in both asthma and allergy. With the identification of the structure of the cysLT receptor, antileukotriene therapies have been developed that either (a) inhibit synthesis of leukotriene (through 5-lipoxygenase inhibition) or (b) block the cysLT receptor. Preliminary investigations indicate that corticosteroids also may partially block the synthesis of cysLT and that cysLTs may be chemotactic for other inflammatory cells, e.g. eosinophils, by a mechanism that has not yet been defined. Currently, anti-LT therapies are approved by the US Food and Drug Administration (FDA) only for patients with asthma. These drugs generally are moderately efficacious agents, although they are highly efficacious in aspirin-induced asthma (AIA). In other forms of asthma, inhaled corticosteroid (ICS) therapy has been more effective than anti-LT therapy in improving air flow obstruction. However, anti-LT agents are additive to beta-adrenoceptor and ICS in their effects. Accordingly, anti-LT therapies are used frequently as supplemental treatments in asthmatic patients whose asthma is not optimally controlled by a combination of other drugs, including long-acting beta-adrenoceptor drugs and ICS agents. The growth of leukotriene receptor antagonists (LTRAs) has been extraordinary in the United States. The exceptional safety of these agents and their ease of administration as tablets taken once or twice daily has spurred this growth. In the past year, the high-affinity cysLT receptor has been cloned. This holds forth the promise of a second generation of LTRA agents of even greater efficacy and possibly greater duration of action.

Publisher

Annual Reviews

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3