Affiliation:
1. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611;
Abstract
▪ Abstract For many years, cytoplasmic intermediate filaments (IFs) were considered to be stable cytoskeletal elements contributing primarily to the maintenance of the structural and mechanical integrity of cells. However, recent studies of living cells have revealed that IFs and their precursors possess a remarkably wide array of dynamic and motile properties. These properties are in large part due to interactions with molecular motors such as conventional kinesin, cytoplasmic dynein, and myosin. The association between IFs and motors appears to account for much of the well-documented molecular cross talk between IFs and the other major cytoskeletal elements, microtubules, and actin-containing microfilaments. Furthermore, the associations with molecular motors are also responsible for the high-speed, targeted delivery of nonfilamentous IF protein cargo to specific regions of the cytoplasm where they polymerize into IFs. This review considers the functional implications of the motile properties of IFs and discusses the potential relationships between malfunctions in these motile activities and human diseases.
Subject
Cell Biology,Developmental Biology
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献