Genomic Imprinting: Intricacies of Epigenetic Regulation in Clusters

Author:

Verona Raluca I.1,Mann Mellissa R.W.1,Bartolomei Marisa S.1

Affiliation:

1. Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148;

Abstract

▪ Abstract  An intriguing characteristic of imprinted genes is that they often cluster in large chromosomal domains, raising the possibility that gene-specific and domain-specific mechanisms regulate imprinting. Several common features emerged from comparative analysis of four imprinted domains in mice and humans: (a) Certain genes appear to be imprinted by secondary events, possibly indicating a lack of gene-specific imprinting marks; (b) some genes appear to resist silencing, predicting the presence of cis-elements that oppose domain-specific imprinting control; (c) the nature of the imprinting mark remains incompletely understood. In addition, common silencing mechanisms are employed by the various imprinting domains, including silencer elements that nucleate and propagate a silent chromatin state, insulator elements that prevent promoter-enhancer interactions when hypomethylated on one parental allele, and antisense RNAs that function in silencing the overlapping sense gene and more distantly located genes. These commonalities are reminiscent of the behavior of genes subjected to, and the mechanisms employed in, dosage compensation.

Publisher

Annual Reviews

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3