AH RECEPTOR SIGNALING PATHWAYS

Author:

Schmidt Jennifer V.1,Bradfield Christopher A.2

Affiliation:

1. Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, Illinois 60611

2. McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, 1400 University Avenue, Madison, Wisconsin 53706

Abstract

▪ Abstract  The aryl hydrocarbon (Ah) receptor has occupied the attention of toxicologists for over two decades. Interest arose from the early observation that this soluble protein played key roles in the adaptive metabolic response to polycyclic aromatic hydrocarbons and in the toxic mechanism of halogenated dioxins and dibenzofurans. More recent investigations have provided a fairly clear picture of the primary adaptive signaling pathway, from agonist binding to the transcriptional activation of genes involved in the metabolism of xenobiotics. Structure-activity studies have provided an understanding of the pharmacology of this receptor; recombinant DNA approaches have identified the enhancer sequences through which this factor regulates gene expression; and functional analysis of cloned cDNAs has allowed the characterization of the major signaling components in this pathway. Our objective is to review the Ah receptor's role in regulation of xenobiotic metabolism and use this model as a framework for understanding the less well-characterized mechanism of dioxin toxicity. In addition, it is hoped that this information can serve as a model for future efforts to understand an emerging superfamily of related signaling pathways that control biological responses to an array of environmental stimuli.

Publisher

Annual Reviews

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3