Affiliation:
1. Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037;
Abstract
▪ Abstract Actin filaments (thin filaments) are polymerized to strikingly uniform lengths in striated muscle sarcomeres. Yet, actin monomers can exchange dynamically into thin filaments in vivo, indicating that actin monomer association and dissociation at filament ends must be highly regulated to maintain the uniformity of filament lengths. We propose several hypothetical mechanisms that could generate uniform actin filament length distributions and discuss their application to the determination of thin filament length in vivo. At the Z line, titin may determine the minimum extent and tropomyosin the maximum extent of thin filament overlap by regulating α-actinin binding to actin, while a unique Z filament may bind to capZ and regulate barbed end capping. For the free portion of the thin filament, we evaluate possibilities that thin filament components (e.g. nebulin or the tropomyosin/troponin polymer) determine thin filament lengths by binding directly to tropomodulin and regulating pointed end capping, or alternatively, that myosin thick filaments, together with titin, determine filament length by indirectly regulating tropomodulin's capping activity.
Subject
Cell Biology,Developmental Biology
Cited by
128 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献