Nutrition, Epigenetics, and Developmental Plasticity: Implications for Understanding Human Disease

Author:

Burdge Graham C.1,Lillycrop Karen A.2

Affiliation:

1. Institute of Human Nutrition, University of Southampton School of Medicine, Southampton, SO16 6YD, United Kingdom;

2. Development and Cell Biology, University of Southampton School of Biological Sciences, Southampton, SO16 7PX, United Kingdom;

Abstract

There is considerable evidence for induction of differential risk of noncommunicable diseases in humans by variation in the quality of the early life environment. Studies in animal models show that induction and stability of induced changes in the phenotype of the offspring involve altered epigenetic regulation by DNA methylation and covalent modifications of histones. These findings indicate that such epigenetic changes are highly gene specific and function at the level of individual CpG dinucleotides. Interventions using supplementation with folic acid or methyl donors during pregnancy, or folic acid after weaning, alter the phenotype and epigenotype induced by maternal dietary constraint during gestation. This suggests a possible means for reducing risk of induced noncommunicable disease, although the design and conduct of such interventions may require caution. The purpose of this review is to discuss recent advances in understanding the mechanism that underlies the early life origins of disease and to place these studies in a broader life-course context.

Publisher

Annual Reviews

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3