ROCK TO SEDIMENT—SLOPE TO SEA WITH 10BE—RATES OF LANDSCAPE CHANGE

Author:

Robert Bierman Paul1,Nichols Kyle Keedy2

Affiliation:

1. Department of Geology and School of Natural Resources, University of Vermont, Burlington, Vermont 05405,

2. Department of Geology, Skidmore College, Saratoga Springs, New York 12866,

Abstract

▪ Abstract  Measurements of cosmogenic nuclides, predominately 10Be, allow new insights into the ways in which and the rates at which sediment is generated, transported, and deposited over timescales ranging from 103 to 106 years. Samples from rock exposures are used to estimate erosion rates at points on the landscape, whereas samples of fluvial sediment provide estimates of basin-scale rates of denudation integrated over <1 to >104 km2. Nuclide data show that hilltop, bare rock outcrops erode more slowly than basins as a whole, suggesting the potential for relief to increase over time as well-drained outcrops grow higher. More elaborate experiments and interpretive models provide insight into the distribution of hillslope processes, including the bedrock-to-soil conversion rate, which appears to increase under shallow soil cover and then decrease under deeper soils. Changes in average nuclide activity down slopes can be used to estimate grain speed over millennia, suggesting, for example, that sediment on desert piedmonts moves, on average, decimeters to meters per year. In other cases, changes in nuclide activity down river networks or along shorelines can be interpreted with mixing models to indicate sediment sources. Sediment deposition rates in otherwise undateable deposits can now be estimated by analyzing samples collected from depth profiles. Over the past decade, the analysis and interpretation of cosmogenic nuclides has given geomorphologists an unprecedented opportunity to measure rates and infer the distribution of geomorphic processes across Earth's varied landscapes. Long-standing models of landscape change can now be tested quantitatively.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3