Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy

Author:

van der Hoef M.A.1,van Sint Annaland M.1,Deen N.G.1,Kuipers J.A.M.1

Affiliation:

1. Department of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands;

Abstract

Gas-solid fluidized beds are widely applied in many chemical processes involving physical and/or chemical transformations, and for this reason they are the subject of intense research in chemical engineering science. Over the years, researchers have developed a large number of numerical models of gas-fluidized beds that describe gas-solid flow at different levels of detail. In this review, we discriminate these models on the basis of whether a Lagrangian or a Eulerian approach is used for the gas and/or particulate flow and subsequently classify them into five main categories, three of which we discuss in more detail. Specifically, these are resolved discrete particle models (also called direct numerical simulations), unresolved discrete particle models (also called discrete element models), and two-fluid models. For each of the levels of description, we give the general equations of motion and indicate how they can be solved numerically by finite-difference techniques, followed by some illustrative examples of a fluidized bed simulation. Finally, we address some of the challenges ahead in the multiscale modeling of gas-fluidized beds.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3