Affiliation:
1. Department of Chemistry, University of Illinois at Urbana Champaign, Box 01-6 CLSL, Urbana, Illinois 61801;
Abstract
▪ Abstract Recent progress in combining the techniques of time-resolved molecular spectroscopy with shock compression science is reviewed. Shock wave spectroscopy probes the response of molecules to high-speed, large-amplitude mechanical transients and is an important way of studying physical chemical phenomena that involve large-amplitude displacements. A brief discussion of the continuum model for shock compression and a molecular model for the shock front is presented. Methods for generating and detecting shock effects are reviewed. Several applications of shock spectroscopy are reviewed, including high explosives, the nanoshock technique that uses ultrafast lasers, and shock compression of biological molecules.
Subject
Physical and Theoretical Chemistry
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献