SPECTROSCOPY AND HOT ELECTRON RELAXATION DYNAMICS IN SEMICONDUCTOR QUANTUM WELLS AND QUANTUM DOTS

Author:

Nozik Arthur J12

Affiliation:

1. The National Renewable Energy Laboratory, Center for Basic Sciences, 1617 Cole Boulevard, Golden, Colorado 80401,

2. Department of Chemistry, University of Colorado, Boulder, Colorado 80309;

Abstract

▪ Abstract  Photoexcitation of a semiconductor with photons above the semiconductor band gap creates electrons and holes that are out of equilibrium. The rates at which the photogenerated charge carriers return to equilibrium via thermalization through carrier scattering, cooling by phonon emission, and radiative and nonradiative recombination are important issues. The relaxation processes can be greatly affected by quantization effects that arise when the carriers are confined to regions of space that are small compared with their deBroglie wavelength or the Bohr radius of bulk excitons. The effects of size quantization in semiconductor quantum wells (carrier confinement in one dimension) and quantum dots (carrier confinement in three dimensions) on the respective carrier relaxation processes are reviewed, with emphasis on electron cooling dynamics. The implications of these effects for applications involving radiant energy conversion are also discussed.

Publisher

Annual Reviews

Subject

Physical and Theoretical Chemistry

Cited by 695 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3