Affiliation:
1. Department of Chemistry and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403;
Abstract
This article summarizes theoretical studies of molecular state determination by wave-packet interferometry (WPI) and recounts some recent experimental applications of molecular WPI. Calculations predict that two-color nonlinear WPI data can be used to reconstruct a rovibronic target wave packet evolving under an incompletely characterized nuclear Hamiltonian. This can be accomplished by the isolation via phase cycling or wave-vector matching of an exhaustive collection of overlaps between the unknown target and the members of a family of reference wave packets whose form is known by construction. This review highlights recent experiments employing WPI to gain amplitude-level information about the photoexcited-state dynamics of small molecules in the gas phase and in rare-gas crystals. I briefly describe a new semiclassical theory for condensed-phase WPI and other coherence-spectroscopy measurements, such as time-resolved coherent anti-Stokes Raman scattering, and mention our initial studies of nonlinear WPI from electronic energy-transfer complexes.
Subject
Physical and Theoretical Chemistry
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献