Advances in Correlated Electronic Structure Methods for Solids, Surfaces, and Nanostructures

Author:

Huang Patrick1,Carter Emily A.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544-5263;

Abstract

Calculations of the electronic structure of solids began decades ago, but only recently have solid-state quantum techniques become sufficiently reliable that their application is nearly as routine as quantum chemistry is for molecules. We aim to introduce chemists to the pros and cons of first-principles methods that can provide atomic-scale insight into the properties and chemistry of bulk materials, interfaces, and nanostructures. The techniques we review include the ubiquitous density functional theory (DFT), which is often sufficient, especially for metals; extensions such as DFT + U and hybrid DFT, which incorporate exact exchange to rid DFT of its spurious self-interactions (critical for some semiconductors and strongly correlated materials); many-body Green's function (GW and Bethe-Salpeter) methods for excited states; quantum Monte Carlo, in principle an exact theory but for which forces (hence structure optimization and dynamics) are problematic; and embedding theories that locally refine the quantum treatment to improve accuracy.

Publisher

Annual Reviews

Subject

Physical and Theoretical Chemistry

Cited by 207 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3