Affiliation:
1. Faculty of Chemistry and Chemical Technology, University of Ljubljana, POB 537, Ljubljana, Slovenia; 1001
Abstract
▪ Abstract Polyelectrolytes are electrolytes asymmetric both in charge and size. Their properties in solution are dominated by Coulombic forces, and without a detailed understanding of these interactions, no interpretation of experimental data is possible. This paper is a review of recent developments in the theory of highly asymmetric electrolytes of spherical shape resembling surfactant micelles. Three different models are discussed: (a) the cell model, which is focused on the small ion-macroion interaction; (b) the model that treats the solution as an effective one-component fluid of macroions; and (c) the isotropic model, where the solution is represented as a mixture of charged spheres. Traditionally, the electrostatic interactions are accounted for via the solution of the Poisson-Boltzmann equation. This theory, however, ignores the fluctuations around the most probable distribution and may yield poor results for systems with multivalent ions. This paper focuses on developments beyond the Poisson-Boltzmann theory; the results of computer simulations and integral equation theories represent the major part of the review.
Subject
Physical and Theoretical Chemistry
Cited by
206 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献