Magnetohydrodynamics in Rapidly Rotating spherical Systems

Author:

Zhang Keke12,Schubert Gerald12

Affiliation:

1. School of Mathematical Sciences, University of Exeter, Exeter, United Kingdom, EX4 4QE;

2. Department of Earth and Space SciencesInstitute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesCalifornia90095-1567

Abstract

▪ Abstract  Recent developments in the study of buoyancy-driven convection, magnetoconvection, and convection-driven dynamos in rapidly rotating spherical systems, with application to the fluid parts of the metallic cores of the Earth and other planets and satellites, are reviewed. While the fluid motions driven by convection generate and sustain magnetic fields by magnetohydrodynamic dynamo processes, the pattern and strength of the convective motions that control dynamo action are critically influenced by the combined and inseparable effects of rotation, magnetic fields, and spherical geometry. Emphasis is placed on the key dynamic feature of rotating spherical magnetohydrodynamics—the interaction between the Coriolis and Lorentz forces and the resulting effect on convection and magnetohydrodynamic processes. It is shown that the small value of the Ekman number, a result of rapid rotation and small viscosity in the fluid parts of planetary cores, causes severe difficulties in modeling planetary dynamos. There exist huge disparities, as a direct consequence of a small Ekman number, in the spatial, temporal, and amplitude scales of a convection-driven dynamo. The use of hyperviscosity removes these difficulties, but at the same time it alters the key dynamics in a fundamental and undesirable way. A convection-driven dynamo solution in rotating spherical systems at a sufficiently small Ekman number that is dynamically relevant to planetary fluid cores is yet to be achieved and remains a great challenge.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3