FROM BIOPHYSICS TO MODELS OF NETWORK FUNCTION

Author:

Marder Eve1

Affiliation:

1. Volen Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254;

Abstract

▪ Abstract  Neurons and synapses display a rich range of time-dependent processes. Which of these are critical to understanding specific integrative functions in the brain? Computational methods of various kinds are used to understand how systems of neurons interact to produce behavior. However, these models often assume that neuronal dynamics and synaptic strengths are fixed. This review presents some recent models that illustrate that short-term synaptic plasticity mechanisms such as facilitation and depression can have important implications for network function. Other features of synaptic transmission such as multi-component synaptic potentials, cotransmission, and neuromodulation with obvious potential computational implications are presented. These examples illustrate that synaptic strength and intrinsic properties in networks are continuously varying on numerous time scales as a function of the temporal patterns of activity in the network. Thus, both firing frequency of the neurons in a circuit, and the modulatory environment determine the intrinsic and synaptic properties that produce behavior.

Publisher

Annual Reviews

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3