Neural Basis of Hearing in Real-World Situations

Author:

Feng Albert S.1,Ratnam Rama1

Affiliation:

1. Department of Molecular and Integrative Physiology, and Beckman InstituteUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, 61801,

Abstract

In real-world situations animals are exposed to multiple sound sources originating from different locations. Most vertebrates have little difficulty in attending to selected sounds in the presence of distractors, even though sounds may overlap in time and frequency. This chapter selectively reviews behavioral and physiological data relevant to hearing in complex auditory environments. Behavioral data suggest that animals use spatial hearing and integrate information in spectral and temporal domains to determine sound source identity. Additionally, attentional mechanisms help improve hearing performance when distractors are present. On the physiological side, although little is known of where and how auditory objects are created in the brain, studies show that neurons extract behaviorally important features in parallel hierarchically arranged pathways. At the highest levels in the pathway these features are often represented in the form of neural maps. Further, it is now recognized that descending auditory pathways can modulate information processing in the ascending pathway, leading to improvements in signal detectability and response selectivity, perhaps even mediating attention. These issues and their relevance to hearing in real-world conditions are discussed with respect to several model systems for which both behavioral and physiological data are available.

Publisher

Annual Reviews

Subject

General Psychology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3