THE DYNAMICAL SYSTEMS APPROACH TO LAGRANGIAN TRANSPORT IN OCEANIC FLOWS

Author:

Wiggins Stephen1

Affiliation:

1. School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom

Abstract

▪ Abstract  Chaotic advection and, more generally, ideas from dynamical systems, have been fruitfully applied to a diverse, and varied, collection of mixing and transport problems arising in engineering applications over the past 20 years. Indeed, the “dynamical systems approach” was developed, and tested, to the point where it can now be considered a standard tool for understanding mixing and transport issues in many disciplines. This success for engineering-type flows motivated an effort to apply this approach to transport and mixing problems in geophysical flows. However, there are fundamental difficulties arising in this endeavor that must be properly understood and overcome. Central to this approach is that the starting point for analysis is a velocity field (i.e., the “dynamical system”). In many engineering applications this can be obtained sufficiently accurately, either analytically or computationally, so that it describes particle trajectories for the actual flow. However, in geophysical flows (and we concentrate here almost exclusively on oceanographic flows), the wide range of dynamically significant time and length scales makes the justification of any velocity field, in the sense of reproducing particle trajectories for the actual flow, a much more difficult matter. Nevertheless, the case for this approach is compelling due to the advances in observational capabilities in oceanography (e.g., drifter deployments, remote sensing capabilities, satellite imagery, etc.), which reveal space-time structures that are highly suggestive of the structures one visualizes in the global, geometrical study of dynamical systems theory. This has been pursued in recent years through a combination of laboratory studies, kinematic models, and dynamically consistent models that have all been compared with observational data. During the course of these studies it has become apparent that a new type of dynamical system is necessary to consider in these studies (i.e., a finite time, aperiodically time-dependent velocity field defined as a data set), which requires the development of new analytical and computational tools, as well as the necessity to discard some of the standard ideas and results from dynamical systems theory. In this article we review a number of the key developments to date in this young, but rapidly developing, area at the interface between geophysical fluid dynamics and applied and computational mathematics. We also describe the wealth of new directions for research that this approach unlocks.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3