Uranium Reduction

Author:

Wall Judy D.1,Krumholz Lee R.2

Affiliation:

1. Biochemistry and Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, Missouri 65211;

2. Department of Botany and Microbiology and Institute for Energy and the Environment, University of Oklahoma, Norman, Oklahoma 73019;

Abstract

The dramatic decrease in solubility accompanying the reduction of U(VI) to U(IV), producing the insoluble mineral uraninite, has been viewed as a potential mechanism for sequestration of environmental uranium contamination. In the past 15 years, it has been firmly established that a variety of bacteria exhibit this reductive capacity. To obtain an understanding of the microbial metal metabolism, to develop a practical approach for the acceleration of in situ bioreduction, and to predict the long-term fate of environmental uranium, several aspects of the microbial process have been experimentally explored. This review briefly addresses the research to identify specific uranium reductases and their cellular location, competition between uranium and other electron acceptors, attempts to stimulate in situ reduction, and mechanisms of reoxidation of reduced uranium minerals.

Publisher

Annual Reviews

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3