Carbon-Nitrogen Interactions in Terrestrial Ecosystems in Response to Rising Atmospheric Carbon Dioxide

Author:

Reich Peter B.1,Hungate Bruce A.2,Luo Yiqi3

Affiliation:

1. Department of Forest Resources, University of Minnesota, St. Paul, Minnesota 55108;

2. Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, Arizona 86011;

3. Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019;

Abstract

Interactions involving carbon (C) and nitrogen (N) likely modulate terrestrial ecosystem responses to elevated atmospheric carbon dioxide (CO2) levels at scales from the leaf to the globe and from the second to the century. In particular, response to elevated CO2 may generally be smaller at low relative to high soil N supply and, in turn, elevated CO2 may influence soil N processes that regulate N availability to plants. Such responses could constrain the capacity of terrestrial ecosystems to acquire and store C under rising elevated CO2 levels. This review highlights the theory and empirical evidence behind these potential interactions. We address effects on photosynthesis, primary production, biogeochemistry, trophic interactions, and interactions with other resources and environmental factors, focusing as much as possible on evidence from long-term field experiments.

Publisher

Annual Reviews

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3