The Evolutionary Enigma of Mixed Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence

Author:

Goodwillie Carol1,Kalisz Susan2,Eckert Christopher G.3

Affiliation:

1. 1Department of Biology, East Carolina University, Greenville, North Carolina 27858;

2. 2Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;

3. 3Department of Biology, Queen's University, Kingston, Ontario K7L 3N6 Canada;

Abstract

▪ Abstract  Mixed mating, in which hermaphrodite plant species reproduce by both self- and cross-fertilization, presents a challenging problem for evolutionary biologists. Theory suggests that inbreeding depression, the main selective factor opposing the evolution of selfing, can be purged with self-fertilization, a process that is expected to yield pure strategies of either outcrossing or selfing. Here we present updated evidence suggesting that mixed mating systems are frequent in seed plants. We outline the floral and pollination mechanisms that can lead to intermediate outcrossing, review the theoretical models that address the stability of intermediate outcrossing, and examine relevant empirical evidence. A comparative analysis of estimated inbreeding coefficients and outcrossing rates suggests that mixed mating often evolves despite strong inbreeding depression. The adaptive significance of mixed mating has yet to be fully explained for any species. Recent theoretical and empirical work suggests that future progress will come from a better integration of studies of floral mechanisms, genetics, and ecology, and recognition of how selective pressures vary in space and time.

Publisher

Annual Reviews

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3