ENDANGERED MUTUALISMS: The Conservation of Plant-Pollinator Interactions

Author:

Kearns Carol A.1234,Inouye David W.1234,Waser Nickolas M.1234

Affiliation:

1. EPO Biology, Environmental Residential Academic Program, C.B.176, University of Colorado, Boulder, Colorado 80309;

2. Department of Biology, University of Maryland, College Park, Maryland 20742;

3. Department of Biology, University of California, Riverside California 92521;

4. Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte Colorado 81224;

Abstract

▪ Abstract  The pollination of flowering plants by animals represents a critical ecosystem service of great value to humanity, both monetary and otherwise. However, the need for active conservation of pollination interactions is only now being appreciated. Pollination systems are under increasing threat from anthropogenic sources, including fragmentation of habitat, changes in land use, modern agricultural practices, use of chemicals such as pesticides and herbicides, and invasions of non-native plants and animals. Honeybees, which themselves are non-native pollinators on most continents, and which may harm native bees and other pollinators, are nonetheless critically important for crop pollination. Recent declines in honeybee numbers in the United States and Europe bring home the importance of healthy pollination systems, and the need to further develop native bees and other animals as crop pollinators. The “pollination crisis” that is evident in declines of honeybees and native bees, and in damage to webs of plant-pollinator interaction, may be ameliorated not only by cultivation of a diversity of crop pollinators, but also by changes in habitat use and agricultural practices, species reintroductions and removals, and other means. In addition, ecologists must redouble efforts to study basic aspects of plant-pollinator interactions if optimal management decisions are to be made for conservation of these interactions in natural and agricultural ecosystems.

Publisher

Annual Reviews

Subject

Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3