Ecologic Studies Revisited

Author:

Wakefield Jonathan1

Affiliation:

1. Departments of Statistics and Biostatistics, University of Washington, Seattle, Washington 98195;

Abstract

Ecologic studies use data aggregated over groups rather than data on individuals. Such studies are popular because they use existing databases and can offer large exposure variation if the data arise from broad geographical areas. Unfortunately, the aggregation of data that define ecologic studies results in an information loss that can lead to ecologic bias. Specifically, ecologic bias arises from the inability of ecologic data to characterize within-area variability in exposures and confounders. We describe in detail particular forms of ecologic bias so that their potential impact on any particular study may be assessed. The only way to overcome such bias, while avoiding uncheckable assumptions concerning the missing information, is to supplement the ecologic with individual-level information, and we outline a number of proposals that may achieve this aim.

Publisher

Annual Reviews

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3