MODELING OF FLUID-STRUCTURE INTERACTION

Author:

Dowell Earl H1,Hall Kenneth C1

Affiliation:

1. Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, North Carolina 27708-0300;

Abstract

▪ Abstract  The interaction of a flexible structure with a flowing fluid in which it is submersed or by which it is surrounded gives rise to a rich variety of physical phenomena with applications in many fields of engineering, for example, the stability and response of aircraft wings, the flow of blood through arteries, the response of bridges and tall buildings to winds, the vibration of turbine and compressor blades, and the oscillation of heat exchangers. To understand these phenomena we need to model both the structure and the fluid. However, in keeping with the overall theme of this volume, the emphasis here is on the fluid models. Also, the applications are largely drawn from aerospace engineering although the methods and fundamental physical phenomena have much wider applications. In the present article, we emphasize recent developments and future challenges. To provide a context for these, the article begins with a description of the various physical models for a fluid undergoing time-dependent motion, then moves to a discussion of the distinction between linear and nonlinear models, time-linearized models and their solution in either the time or frequency domains, and various methods for treating nonlinear models, including time marching, harmonic balance, and systems identification. We conclude with an extended treatment of the modal character of time-dependent flows and the construction of reduced-order models based on an expansion in terms of fluid modes. The emphasis is on the enhanced physical understanding and dramatic reductions in computational cost made possible by reduced-order models, time linearization, and methodologies drawn from dynamical system theory.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 499 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3