MATHEMATICAL MODELING OF TUMOR-INDUCED ANGIOGENESIS

Author:

Chaplain M.A.J.1,McDougall S.R.2,Anderson A.R.A.1

Affiliation:

1. The SIMBIOS Center, Division of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland;,

2. Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS, Scotland;

Abstract

Angiogenesis, the growth of a network of blood vessels, is a crucial component of solid tumor growth, linking the relatively harmless avascular and the potentially fatal vascular growth phases of the tumor. As a process, angiogenesis is a well-orchestrated sequence of events involving endothelial cell migration and proliferation; degradation of tissue; new capillary vessel formation; loop formation (anastomosis) and, crucially, blood flow through the network. Once there is flow associated with the nascent network, subsequent growth evolves both temporally and spatially in response to the combined effects of angiogenic factors, migratory cues via the extracellular matrix, and perfusion-related hemodynamic forces in a manner that may be described as both adaptive and dynamic. In this article, we first present a review of previous theoretical and computational models of angiogenesis and then indicate how recent developments in flow models are providing insight into antiangiogenic and chemotherapeutic drug treatment of solid tumors.

Publisher

Annual Reviews

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3