Affiliation:
1. Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul Minnesota, 55108;
Abstract
Pollen grains preserved in lake and bog sediment provide a record of past vegetation that has been an important source of information about climate and land cover during the Quaternary Period. Yet from the beginning, questions have been raised about the source area of pollen in sediment. Interpretation has been hampered by the lack of well-developed theory treating the relationship between the spatial distribution of trees on the landscape and the percentages of pollen in sediment. Within the past decade, however, new theory, models, and empirical data show how heterogeneous vegetation is represented by pollen. The distinction between “local” and “regional” pollen is explained by the Prentice-Sugita dispersal/deposition models, which predict how the ratio of regional to local pollen changes with lake size. Sugita’s model simulating a landscape with heterogeneous vegetation predicts the size of the relevant source area—the area of vegetation reflected in between-lake variations in pollen loading—while demonstrating that regional pollen from beyond this distance is homogeneous at all lakes of similar size. By predicting the way landscape patterns will be reflected in pollen records, simulation models can improve research design and lead to more detailed and spatially precise records of past vegetation, enhancing continental-scale climate reconstructions.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics
Cited by
186 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献