Affiliation:
1. Institute for Medicine and Engineering, Department of Chemical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
Abstract
▪ Abstract Blood clots form under hemodynamic conditions and can obstruct flow during angina, acute myocardial infarction, stroke, deep vein thrombosis, pulmonary embolism, peripheral thrombosis, or dialysis access graft thrombosis. Therapies to remove these clots through enzymatic and/or mechanical approaches require consideration of the biochemistry and structure of blood clots in conjunction with local transport phenomena. Because blood clots are porous objects exposed to local hemodynamic forces, pressure-driven interstitial permeation often controls drug penetration and the overall lysis rate of an occlusive thrombus. Reaction engineering and transport phenomena provide a framework to relate dosage of a given agent to potential outcomes. The design and testing of thrombolytic agents and the design of therapies must account for (a) the binding, catalytic, and systemic clearance properties of the therapeutic enzyme; (b) the dose and delivery regimen; (c) the biochemical and structural aspects of the thrombotic occlusion; (d) the prevailing hemodynamics and anatomical location of the thrombus; and (e) therapeutic constraints and risks of side effects. These principles also impact the design and analysis of local delivery devices.
Subject
Biomedical Engineering,Medicine (miscellaneous)
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献