Affiliation:
1. Department of Electrical and Computer Engineering and the Pritzker Institute of Medical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616;
Abstract
▪ Abstract Historically, electronic devices such as pacemakers and neuromuscular stimulators have been surgically implanted into animals and humans. A new class of implants made possible by advances in monolithic electronic design and implant packaging is small enough to be implanted by percutaneous injection through large-gauge hypodermic needles and does not require surgical implantation. Among these, commercially available implants, known as radio frequency identification (RFID) tags, are used for livestock, pet, laboratory animal, and endangered-species identification. The RFID tag is a subminiature glass capsule containing a solenoidal coil and an integrated circuit. Acting as the implanted half of a transcutaneous magnetic link, the RFID tag is powered by and communicates with an extracorporeal magnetic reader. The tag transmits a unique identification code that serves the function of identifying the animal. Millions of RFID tags have been sold since the early 1980s. Based on the success of the RFID tags, research laboratories have developed injectable medical implants, known as micromodules. One type of micromodule, the microstimulator, is designed for use in functional-neuromuscular stimulation. Each microstimulator is uniquely addressable and could comprise one channel of a multichannel functional-neuromuscular stimulation system. Using bidirectional telemetry and commands, from a single extracorporeal transmitter, as many as 256 microstimulators could form the hardware basis for a complex functional-neuromuscular stimulation feedback-control system. Uses include stimulation of paralyzed muscle, therapeutic functional-neuromuscular stimulation, and neuromodulatory functions such as laryngeal stimulation and sleep apnea.
Subject
Biomedical Engineering,Medicine (miscellaneous)
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献