The Three-Phase Interstellar Medium Revisited

Author:

Cox Donald P.1

Affiliation:

1. Department of Physics, University of Wisconsin, Madison, Wisconsin 53706;

Abstract

▪ Abstract  The interstellar medium in the vicinity of the Sun is arranged in large-scale structures of bubble walls, sheets, and filaments of warm gas, within which close to the midplane there are subsheets and filaments of cold dense material; the whole occupies roughly half the available volume and extends with decreasing mean density to at least a kiloparsec off the plane. The remainder of the volume is in bubble interiors, cavities, and tunnels of much lower density, with some but not all of those lower density regions hot enough to be observable via their X-ray emission. This entire system is pervaded by a rather strong and irregular magnetic field and cosmic rays, the pressures of which are confined by the weight of the interstellar gas, particularly that far from the plane where gravity is strong. Observations suggest that the cosmic rays and magnetic field have an even more extended vertical distribution than the warm gas, requiring either the weight of additional coronal material or magnetic tension to confine it to the disk. Adjusting one's perception of this medium to embrace the known aspects is difficult. After this adjustment, there are many problems to solve and prejudices to overcome—the weak role of thermal instability, the suppression of certain gravitational instabilities, the problem of determining the state in the low-density regions, the twin difficulties of not having too much OVI (O+5) and getting enough diffuse 3/4 keV X-ray emission, the possible importance of large old-barrel–shaped supernova remnants in clarifying matters, the possible role of dust evolution in adjusting the heating to make clouds stable, the factors influencing the magnitudes of the interstellar pressure and scale height—things that global models of the medium might examine to clarify some of these matters; attention to these details and more constitute the challenge of this subject.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 334 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3