Affiliation:
1. Department of Physiology, University of North Dakota, Grand Forks, North Dakota 58202;
Abstract
▪ Abstract Two potent hypotensive peptides, adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP), are encoded by the adrenomedullin gene. AM stimulates nitric oxide production by endothelial cells, whereas PAMP acts presynaptically to inhibit adrenergic nerves that innervate blood vessels. Complementary, but mechanistically unique, actions also occur in the anterior pituitary gland where both peptides inhibit adrenocorticotropin release. In the adrenal gland both AM and PAMP inhibit potassium and angiotensin II-stimulated aldosterone secretion. Natriuretic and diuretic actions of AM reflect unique actions of the peptide on renal blood flow and tubular function. In the brain AM inhibits water intake and, in a physiologically relevant manner, salt appetite. Both AM and PAMP act in the brain to elevate sympathetic tone, effects that mirror the positive inotropic action of AM in the heart. Cardioprotective actions in the brain and heart may be important counter-regulatory actions that buffer the extreme hypotensive actions of the peptides when released in sepsis. Thus the biologic actions of the proadrenomedullin-derived peptides seem well coordinated to contribute to the physiologic regulation of volume and electrolyte homeostasis.
Cited by
187 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献