Maintaining the Stability of Neural Function: A Homeostatic Hypothesis

Author:

Davis Graeme W12,Bezprozvanny Ilya12

Affiliation:

1. Department of Biochemistry, University of California, San Francisco, San Francisco, California 94143-0448;

2. Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040;

Abstract

▪ Abstract  The precise regulation of neural excitability is essential for proper nerve cell, neural circuit, and nervous system function. During postembryonic development and throughout life, neurons are challenged with perturbations that can alter excitability, including changes in cell size, innervation, and synaptic input. Numerous experiments demonstrate that neurons are able to compensate for these types of perturbation and maintain appropriate levels of excitation. The mechanisms of compensation are diverse, including regulated changes to synaptic size, synaptic strength, and ion channel function in the plasma membrane. These data are evidence for homeostatic regulatory systems that control neural excitability. A model of neural homeostasis suggests that information about cell activity, cell size, and innervation is fed into a system of cellular monitors. Intracellular- and intercellular-signaling systems transduce this information into regulated changes in synaptic and ion channel function. This review discusses evidence for such a model of homeostatic regulation in the nervous system.

Publisher

Annual Reviews

Subject

Physiology

Cited by 245 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3