Physiological Regulation of Prostaglandins in the Kidney

Author:

Hao Chuan-Ming1,Breyer Matthew D.2

Affiliation:

1. Division of Nephrology, Department of Medicine, Vanderbilt University, and Veterans Affair Medical Center, Nashville, Tennessee 37232;

2. Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46225;

Abstract

Cyclooxygenase-derived prostanoids exert complex and diverse functions within the kidney. The biological effect of each prostanoid is controlled at multiple levels, including (a) enzymatic reactions catalyzed sequentially by cyclooxygenase and prostanoid synthase for the synthesis of bioactive prostanoid and (b) the interaction with its receptors that mediate its functions. Cyclooxygenase-derived prostanoids act in an autocrine or a paracrine fashion and can serve as physiological buffers, protecting the kidney from excessive functional changes during physiological stress. Through these actions, prostanoids play important roles in maintaining renal function, body fluid homeostasis, and blood pressure. Renal cortical COX2-derived prostanoids, particularly PGI2 and PGE2, play critical roles in maintaining blood pressure and renal function in volume-contracted states. Renal medullary COX2-derived prostanoids appear to have an antihypertensive effect in individuals challenged with a high-salt diet. Loss of EP2 or IP receptor is associated with salt-sensitive hypertension. COX2 also plays a role in maintaining renal medullary interstitial cell viability in the hypertonic environment of the medulla. Cyclooxygenase-derived prostanoids also are involved in certain pathological processes. The cortical COX2-derived PGI2 participates in the pathogenesis of renal vascular hypertension through stimulating renal renin synthesis and release. COX-derived prostanoids also appear to be involved in the pathogenesis of diabetic nephropathy. COXs, prostanoid synthases, and prostanoid receptors should provide fruitful targets for intervention in the pharmacological treatment of renal disease.

Publisher

Annual Reviews

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3