Advances in Comparative Physiology from High-Speed Imaging of Animal and Fluid Motion

Author:

Lauder George V.1,Madden Peter G.A.1

Affiliation:

1. Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138;

Abstract

Since the time of Muybridge and Marey in the last half of the nineteenth century, studies of animal movement have relied on some form of high-speed or stop-action imaging to permit analysis of appendage and body motion. In the past ten years, the advent of megapixel-resolution high-speed digital imaging with maximal framing rates of 250 to 100,000 images per second has allowed new views of musculoskeletal function in comparative physiology that now extend to imaging flow around moving animals and the calculation of fluid forces produced by animals moving in fluids. In particular, the technique of digital particle image velocimetry (DPIV) has revolutionized our ability to understand how moving animals generate fluid forces and propel themselves through air and water. DPIV algorithms generate a matrix of velocity vectors through the use of image cross-correlation, which can then be used to calculate the force exerted on the fluid as well as locomotor work and power. DPIV algorithms can also be applied to images of moving animals to calculate the velocity of different regions of the moving animal, providing a much more detailed picture of animal motion than can traditional digitizing methods. Although three-dimensional measurement of animal motion is now routine, in the near future model-based kinematic reconstructions and volumetric analyses of animal-generated fluid flow patterns will provide the next step in imaging animal biomechanics and physiology.

Publisher

Annual Reviews

Subject

Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of a novel deep learning–based 3D videography workflow to bat flight;Annals of the New York Academy of Sciences;2024-04-23

2. Adhesion Behavior in Fish: From Structures to Applications;Biomimetics;2023-11-10

3. Hydrodynamic analysis of propulsion process of zebrafish;Physics of Fluids;2022-02

4. Reconstruction of Flight Parameters of a Bat for Flapping Robots;Journal of Biomechanical Engineering;2022-01-07

5. Time-resolved particle image velocimetry;Measurement Science and Technology;2021-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3