BIOLOGICAL ICE NUCLEATION AND ICE DISTRIBUTION IN COLD-HARDY ECTOTHERMIC ANIMALS

Author:

Lee Richard E.1,Costanzo Jon P.1

Affiliation:

1. Department of Zoology, Miami University, Oxford, Ohio 45056;

Abstract

▪ Abstract  For many ectotherms, overwintering survival depends on the avoidance or regulation of ice nucleation and growth within their body fluids. Freeze avoidance via supercooling plays an important role in the cold hardiness of many small species, particularly terrestrial arthropods, that do not survive the freezing of their body fluids. In contrast, mechanisms that limit supercooling and initiate freezing at relatively high temperatures promote survival of the few invertebrates and vertebrates that tolerate freezing. These mechanisms include inoculative freezing, which results from contact with ice in the environment, and various ice nucleating proteins, microbes, and crystalloid compounds. In freeze-tolerant ectotherms, cold hardiness is influenced by complex, seasonally changing interactions among physiological factors, ice nucleators, and the physical microenvironment. Extraorgan sequestration of ice is a major adaptation of freeze tolerance. For most freeze-tolerant species, ice growth is primarily restricted to extracellular compartments; however, intracellular freezing also occurs in some species.

Publisher

Annual Reviews

Subject

Physiology

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3