ASSEMBLY OF FUNCTIONAL CFTR CHLORIDE CHANNELS

Author:

Riordan John R.1

Affiliation:

1. Mayo Clinic College of Medicine, Scottsdale, Arizona, 85259;

Abstract

▪ Abstract  The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, ΔF508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum membrane.

Publisher

Annual Reviews

Subject

Physiology

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3