Intrinsically Disordered Proteins in Human Diseases: Introducing the D2 Concept

Author:

Uversky Vladimir N.123,Oldfield Christopher J.1,Dunker A. Keith13

Affiliation:

1. Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202;

2. Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia

3. Molecular Kinetics, Inc., Indianapolis, Indiana 46268

Abstract

Intrinsically disordered proteins (IDPs) lack stable tertiary and/or secondary structures under physiological conditions in vitro. They are highly abundant in nature and their functional repertoire complements the functions of ordered proteins. IDPs are involved in regulation, signaling, and control, where binding to multiple partners and high-specificity/low-affinity interactions play a crucial role. Functions of IDPs are tuned via alternative splicing and posttranslational modifications. Intrinsic disorder is a unique structural feature that enables IDPs to participate in both one-to-many and many-to-one signaling. Numerous IDPs are associated with human diseases, including cancer, cardiovascular disease, amyloidoses, neurodegenerative diseases, and diabetes. Overall, intriguing interconnections among intrinsic disorder, cell signaling, and human diseases suggest that protein conformational diseases may result not only from protein misfolding, but also from misidentification, missignaling, and unnatural or nonnative folding. IDPs, such as α-synuclein, tau protein, p53, and BRCA1, are attractive targets for drugs modulating protein-protein interactions. From these and other examples, novel strategies for drug discovery based on IDPs have been developed. To summarize work in this area, we are introducing the D2 (disorder in disorders) concept.

Publisher

Annual Reviews

Subject

Cell Biology,Biochemistry,Bioengineering,Structural Biology,Biophysics

Cited by 1230 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3