Affiliation:
1. Molecular Biophysics Program and Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado 80309-0215;
Abstract
▪ Abstract Despite the central importance of peripheral membrane proteins to cellular signaling and metabolic pathways, the structures of protein-membrane interfaces remain largely inaccessible to high-resolution structural methods. In recent years a number of laboratories have contributed to the development of an electron paramagnetic resonance (EPR) power saturation approach that utilizes site-directed spin labeling to determine the key geometric parameters of membrane-docked proteins, including their penetration depths and angular orientations relative to the membrane surface. Representative applications to Ca2+-activated, membrane-docking C2 domains are described.
Subject
Structural Biology,Biophysics
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献