THE PROTEASOME

Author:

Bochtler Matthias1,Ditzel Lars1,Groll Michael1,Hartmann Claudia1,Huber Robert1

Affiliation:

1. Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, Martinsried/Planegg, 82152 Germany;

Abstract

▪ Abstract  Proteasomes are large multisubunit proteases that are found in the cytosol, both free and attached to the endoplasmic reticulum, and in the nucleus of eukaryotic cells. Their ubiquitous presence and high abundance in these compartments reflects their central role in cellular protein turnover. Proteasomes recognize, unfold, and digest protein substrates that have been marked for degradation by the attachment of a ubiquitin moiety. Individual subcomplexes of the complete 26S proteasome are involved in these different tasks: The ATP-dependent 19S caps are believed to unfold substrates and feed them to the actual protease, the 20S proteasome. This core particle appears to be more ancient than the ubiquitin system. Both prokaryotic and archaebacterial ancestors have been identified. Crystal structures are now available for the E. coli proteasome homologue and the T. acidophilum and S. cerevisiae 20S proteasomes. All three enzymes are cylindrical particles that have their active sites on the inner walls of a large central cavity. They share the fold and a novel catalytic mechanism with an N-terminal nucleophilic threonine, which places them in the family of Ntn (N terminal nucleophile) hydrolases. Evolution has added complexity to the comparatively simple prokaryotic prototype. This minimal proteasome is a homododecamer made from two hexameric rings stacked head to head. Its heptameric version is the catalytic core of archaebacterial proteasomes, where it is sandwiched between two inactive antichambers that are made up from a different subunit. In eukaryotes, both subunits have diverged into seven different subunits each, which are present in the particle in unique locations such that a complex dimer is formed that has six active sites with three major specificities that can be attributed to individual subunits. Genetic, biochemical, and high-resolution electron microscopy data, but no crystal structures, are available for the 19S caps. A first step toward a mechanistic understanding of proteasome activation and regulation has been made with the elucidation of the X-ray structure of the alternative, mammalian proteasome activator PA28.

Publisher

Annual Reviews

Subject

Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3