SEMICONDUCTOR WAFER BONDING

Author:

Gösele U.1,Tong Q.-Y.2

Affiliation:

1. Max-Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120 Germany;

2. Wafer Bonding Laboratory, School of Engineering, Duke University, Durham, North Carolina 27708-0300

Abstract

▪ Abstract  When mirror-polished, flat, and clean wafers of almost any material are brought into contact at room temperature, they are locally attracted to each other by van der Waals forces and adhere or bond. This phenomenon is referred to as wafer bonding. The most prominent applications of wafer bonding are silicon-on-insulator (SOI) devices, silicon-based sensors and actuators, as well as optical devices. The basics of wafer-bonding technology are described, including microcleanroom approaches, prevention of interface bubbles, bonding of III-V compounds, low-temperature bonding, ultra-high vacuum bonding, thinning methods such as smart-cut procedures, and twist wafer bonding for compliant substrates. Wafer bonding allows a new degree of freedom in design and fabrication of material combinations that previously would have been excluded because these material combinations cannot be realized by the conventional approach of epitaxial growth.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3