LOW-TEMPERATURE PARTICLE DETECTORS

Author:

Booth Norman E.1,Cabrera Blas2,Fiorini Ettore3

Affiliation:

1. Department of Physics, University of Oxford, Oxford, OX1 3RH, United Kingdom

2. Department of Physics, Stanford University, Stanford, California 94305-4060

3. Dipartimento di Fisica dell' Università di Milano, and Sezione di Milano dell' INFN, Milano, I-20133 Italy

Abstract

▪ Abstract  The need for very good energy resolution in experiments in particle and astroparticle physics and the need to detect very small energy depositions are the major motivations for the development of low-temperature particle detectors. Because the energy quanta associated with superconductors and lattice vibrations (phonons) are more than one hundred times smaller, substantial improvements have been obtained in energy resolution and in sensitivity over conventional detectors. Furthermore, these detection schemes permit tailoring of target or absorber materials to match the physics requirements. In this article, the basic physics principles behind various methods of detecting excitations induced by particle interactions in bulk single-crystal materials at low temperatures are reviewed. We also present an overview of progress toward implementation of particle physics experiments, such as detection of low-energy neutrinos, search for dark-matter particles, search for neutrino-less double β decay, and β- and γ-ray spectroscopy and X-ray astronomy using low-temperature detectors.

Publisher

Annual Reviews

Subject

Nuclear and High Energy Physics

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3