GENETIC AND MOLECULAR ANALYSIS OF CIRCADIAN RHYTHMS

Author:

Dunlap Jay C.1

Affiliation:

1. Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755

Abstract

▪ Abstract  The first part of this review summarizes the two best understood aspects of the two best understood circadian systems, the feedback oscillators of Neurospora and Drosophila, concentrating on what we know about the frequency (frq), period (per), and timeless (tim) genes. In the second part, the general circadian genetic and molecular literature is surveyed, with an eye to describing what is known from a variety of systems about input to the oscillator (entrainment), and how the oscillator might work and be temperature compensated, in emerging systems including Synechococcus, Gonyaulax, Arabidopsis, hamsters, and mice. Finally, the conservation of the molecular components of clocks is analyzed: both frq and per are widely conserved in their respective phylogenetic classes. Pharmacological data suggest that most other organisms use a day-phased oscillator of the type seen in Neurospora rather than a night-phased oscillator such as in Drosophila.

Publisher

Annual Reviews

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3