Affiliation:
1. Center for Neurobiology and Behavior, Departments of Physiology, Anatomy and Cell Biology, Pharmacology, Howard Hughes Medical Institute, Columbia University, New York, NY 10032,
Abstract
▪ Abstract The quantity of neurotransmitter released into the synaptic cleft, the reliability with which it is released, and the response of the postsynaptic cell to that transmitter all contribute to the strength of a synaptic connection. The presynaptic nerve terminal is a major regulatory site for activity-dependent changes in synaptic function. Ionotropic receptors for the inhibitory amino acid GABA, expressed on the presynaptic terminals of crustacean motor axons and vertebrate sensory neurons, were the first well-defined mechanism for the heterosynaptic transmitter-mediated regulation of transmitter release. Recently, presynaptic ionotropic receptors for a large range of transmitters have been found to be widespread throughout the central and peripheral nervous systems. In this review, we first consider some general theoretical issues regarding whether and how presynaptic ionotropic receptors are important regulators of presynaptic function. We consider the criteria that should be met to identify a presynaptic ionotropic receptor and its regulatory function and review several examples of presynaptic receptors that meet at least some of those criteria. We summarize the classic studies of presynaptic inhibition mediated by GABA-gated Cl channels and then focus on presynaptic nicotinic ACh receptors and presynaptic glutamate receptors. Finally, we briefly discuss evidence for other types of presynaptic ionotropic receptors.
Cited by
497 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献